

ÉPREUVE EXTERNE COMMUNE

CE1D2019

MATHÉMATIQUES

LIVRET 1 | LUNDI 17 JUIN

NOM:		
PRÉNOM:		

CLASSE:

N° D'ORDRE :

... /130

L1:.../67

ATTENTION

Pour cette première partie :

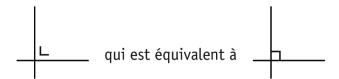
- la calculatrice n'est pas autorisée ;
- tu auras besoin de ton matériel de géométrie (latte, équerre, rapporteur, compas, crayons de couleur);
- n'hésite pas à annoter les figures ;
- n'efface pas tes brouillons.

Remarques:

le symbole × et le symbole · sont deux notations utilisées pour la multiplication

exemple: 5×3 correspond à $5 \cdot 3$

pour traduire la perpendicularité sur une figure, on a utilisé le codage



- pour écrire les coordonnées d'un point, on a utilisé le codage (...; ...) qui est équivalent à (..., ...)
- |AB| est équivalent à \overline{AB} ou d(A;B)

2

COMPLÈTE les suites de nombres.

-80 × (-2) 10 × (-2) 40 × (-2) -5 × (-2) × (-2) -20 160

- 20 · - 20 - 20 - 20 51 31 11 -29 -49

31 + 15 + 12 + 3 + 9 1 19 4 10 46

QUESTION

DÉCOMPOSE 720 en facteurs premiers.

ÉCRIS ta réponse sous forme d'un produit de puissances de nombres premiers différents.

 $720 = 2^4 x 3^2 x 5$

720 2

2 360

180 2

90 2

45 3

15 3

5 5

1

/4

$$504 = 2^3 \times 3^2 \times 7$$

$$600 = 2^3 \times 3 \times 5^2$$

ÉCRIS le PGCD de 504 et de 600 sous la forme d'un produit de puissances de nombres premiers.

$$PGCD = 2^3 \times 3$$

ÉCRIS le PPCM de 504 et de 600 sous la forme d'un produit de puissances de nombres premiers.

$$PPCM = 2^3 \times 3^2 \times 5^2 \times 7$$

QUESTION

À l'entrainement, trois cyclistes font des tours d'un étang.

Jean effectue un tour en 9 minutes, Eva en 10 minutes et Philippe en 15 minutes.

Ils ont commencé leur entrainement au même endroit et en même temps à 14h15.

DÉTERMINE l'heure à laquelle ils vont se retrouver à nouveau ensemble à leur point de départ.

ÉCRIS ton raisonnement et tous tes calculs.

Il faut calculer le PPCM de 9 min, 10 min et 15 min.

$$9 = 3^2$$

$$10 = 2 \times 5$$

$$15 = 3 \times 5$$

$$PPCM (9; 10; 15) = 2 \times 3^2 \times 5$$

Il faudra donc 90 minutes pour que Jean, Eva et Philippe se retrouvent en même temps au même endroit.

Il sera alors 15 h 45.

COCHE, dans chaque cas, la proposition correcte.

La notation scientifique de 0,0075 est

- 7.5×10^3
- 0.75×10^{-2}
- \times 7,5 × 10⁻³
- 75×10^{-4}

La notation scientifique de 1 243 000 est

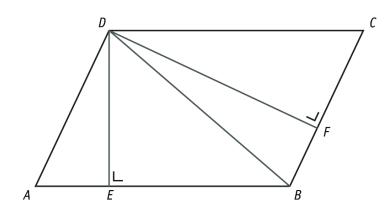
- $1,243 \times 10^3$
- $1,243 \times 10^6$
- 1243×10^3
- $1,243 \times 10^{-6}$

QUESTION

/3

La figure suivante n'est pas à l'échelle.

ABCD est un parallélogramme.

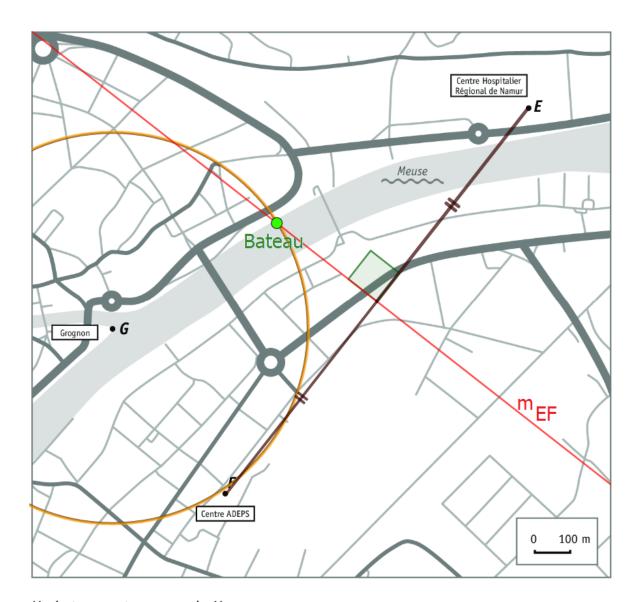


- |DA| = 5,47
- |DE| = 4,94
- |DB| = 7,62
- |DF| = 7,36
- |DC| = 8,14

COMPLÈTE les phrases par un nombre en utilisant les mesures données.

La mesure de la distance du point D à la droite AB vaut 4,94

La mesure de la distance du point A au point B vaut _8,14



Un bateau se trouve sur la Meuse :

- à égale distance du Centre ADEPS (F) et du Centre Hospitalier Régional de Namur (E).
- à 550 m de la pointe du Grognon (*G*).

MARQUE la position du bateau à l'aide d'un point vert.

LAISSE tes constructions visibles.

Le bateau étant situé à égale distance des points E et F, il se trouve nécessairement sur la médiatrice des deux points, appelée m_{EF} .

Etant aussi situé à 550 m du point G et l'échelle du plan étant de 1 cm pour 100 m, le bateau se trouve obligatoirement sur un cercle $\mathcal C$ de centre G et de rayon 5,5 cm.

Il est donc situé sur la Meuse, à l'intersection de la médiatrice m_{EF} et du cercle $\mathcal{C}_{(G;5,5)}$.

Le triangle RST est tel que |RS| = 8 et |ST| = 5.

ENTOURE, parmi les longueurs proposées, celles qui peuvent être la mesure du troisième côté.

8

2	3	$\left(4\right)$	8	9	13	15

Explication

Dans un triangle la mesure de la longueur d'un côté est comprise entre la somme des mesures des longueurs de ses deux autres côtés et leur différence en valeur absolue.

$$|RS| - |ST|| < |RT| < |RS| + |ST|$$

 $|8 - 5| < |RT| < 8 + 5$
 $|RT| < 13$

QUESTION S

Pierre a résolu l'équation 7x + 7 = 28 + 10x.

$$7x + 7 = 28 + 10x$$

$$7x - 10x = 28 - 7$$

$$-3x = 21$$

$$x = 21 + 3$$

$$-3x : (-3) = 21 : (-3)$$

$$x = -7$$

La résolution de Pierre n'est pas correcte.

IDENTIFIE son erreur.

9

JUSTIFIE ton choix.

Il y avait lieu de diviser 21 par le coefficient de x et non pas d'ajouter 3 à 21.

QUESTION

/5

Les classes de 2A, 2B et 2C comptent au total 67 élèves.

La classe de 2B compte 3 élèves de moins que la classe de 2A.

La classe de 2C compte 1 élève de plus que la classe de 2A.

DÉTERMINE le nombre d'élèves de chaque classe.

ÉCRIS ton raisonnement et tous tes calculs.

106

Soit x le nombre d'élèves que compte la classe de 2A, Soit x – 3 le nombre d'élèves que compte la classe de 2B, Soit x +1 le nombre d'élèves que compte la classe de 2C, x = 23 x - 3 = 23 - 3 = 20x + 1 = 23 + 1 = 24

$$x + (x - 3) + (x - 1) = 67$$

 $x + x - 3 + x - 1 = 67$
 $3x - 2 = 67$
 $3x - 2 + 2 = 67 + 2$
 $3x = 69$
 $3x = 69 = 3$
 $x = 23$

Il y a donc 23 élèves en 2A, 20 élèves en 2B et 24 élèves en 2C.

RÉSOUS les équations suivantes.

 \prod_{11a}

Toute solution fractionnaire doit être écrite sous forme irréductible.

7

_ ₁₂

$$-5 \cdot (x + 2) + 1 = 4x$$

$$-5x + (-10) + 1 = 4x$$

$$-5x - 10 + 1 = 4x$$

$$-5x - 9 = 4x$$

$$-5x - 9 + 5x = 4x + 5x$$

$$-9 = 9x$$

$$-9.\frac{1}{9} = 9x.\frac{1}{9}$$

$$S = \{2\}$$

$$\frac{2}{3}x = \frac{3}{5}$$

$$\frac{2}{3}x = \frac{3}{5}$$

$$\frac{2x \cdot 5}{3 \cdot 5} = \frac{3 \cdot 3}{5 \cdot 3}$$

$$\frac{10x}{15} = \frac{9}{15}$$

$$\frac{10x}{15} \cdot \frac{15}{10} = \frac{9}{15} \times \frac{15}{10}$$

$$x = \frac{9}{10}$$

$$S = \{\frac{9}{10}\}$$

QUESTION

/

EFFECTUE.

 $3a \cdot 4b \cdot 2 = 24ab$

$$h^3 - 7h^3 + 3h^3 =$$
_-3 h^3

$$b - 7a + 6b - 2a = -9a + 7b$$
 ou $7b - 9a$

$$3r - (2s - 1) = 3r - 2s + 1$$

$$(5-7h)\cdot (-3) = -15+21h$$
 ou $21h-15$

$$(2-a) \cdot (3b+5) = \underline{6b+10-3ab-5a}$$

EFFECTUE et **SIMPLIFIE** si possible.

$$3a^3 \cdot 2a^2 = 6a^{3+2} = 6a^5$$

$$(-3y^4)^2 = (-3)^2 \cdot (y^4)^2 = 9 \cdot y^{4x2} = 9y^8$$

$$\frac{2x^5}{4x^2} = \frac{2 \cdot x^{5-2}}{4} = \frac{1 \cdot x^3}{2} = \frac{x^3}{2}$$

QUESTION (

/2

EFFECTUE les produits remarquables.

$$(3a - 4b)^2 = (3a)^2 - 2 \cdot 3a \cdot 4b + (4b)^2$$

= $9a^2 - 24 ab + 16b^2$

$$(7x-3) \cdot (7x+3) = (7x)^2 - 3^2$$

= $49x^2 - 9$

QUESTION

Voici la représentation d'une façade d'un entrepôt.

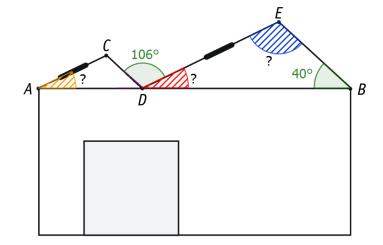
Les mesures ne sont pas respectées.

$$|\widehat{EBD}| = 40^{\circ}$$

A, D et B sont alignés.

AC // DE

CD // EB



Pour installer des panneaux solaires, l'idéal est d'avoir une inclinaison du toit comprise entre 30° et 35°.

Remarque : l'inclinaison du toit est l'angle formé par le toit avec l'horizontale.

DÉTERMINE si on peut installer les panneaux solaires sur les toits [AC] et [DE] dans les conditions idéales. OUI

___ 15a

ÉCRIS ton raisonnement et tous tes calculs.

____ 15b

Les angles \widehat{BED} et \widehat{CDE} sont des angles alternes — internes formés par deux parallèles coupées par une sécante.

 $Donc | \widehat{BED} | = | \widehat{CDE} | = 106^{\circ}$

Dans le triangle BDE, la somme des amplitudes des angles intérieurs vaut 180°.

 $|BDE| = 180^{\circ} - |EBD| - |BED| = 180^{\circ} - 40^{\circ} - 106^{\circ} = 34^{\circ}$

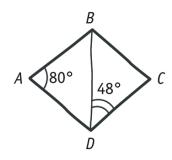
Les angles \widehat{DAC} et \widehat{BDE} sont des angles correspondants formés par deux parallèles coupées par une sécante.

 $Donc |\widehat{DAC}| = |\widehat{BDE}| = 34^{\circ}$

L'amplitude des angles \widehat{DAC} et \widehat{BDE} étant comprise entre 30° et 35°, les panneaux solaires peuvent être installés dans les conditions idéales.

Le triangle DAB est isocèle en A

Le triangle DCB est isocèle en C



JUSTIFIE chaque étape du raisonnement suivant qui te permet d'affirmer que le quadrilatère ABCD n'est pas un parallélogramme.

 $|\vec{CBD}| = 48^{\circ}$ car Les angles à la base d'un triangle isocèle ont même amplitude.

$$Donc |\widehat{CBD}| = |\widehat{BDC}| = 48^{\circ}$$

|DCB| = 84° car La somme des amplitudes des angles intérieurs d'un triangle vaut 180°.

$$Donc |\widehat{DCB}| = 180^{\circ} - |\widehat{BDC}| - |\widehat{CBD}| = 180^{\circ} - 48^{\circ} - 48^{\circ} = 84^{\circ}$$

ABCD n'est pas un parallélogramme car

Les angles opposés de sommet A et de sommet C du quadrilatère n'ont pas même amplitude.

 $|Eneffet, |\widehat{BAD}| = 80^{\circ} et |\widehat{DCB}| = 84^{\circ}$

QUESTION

PLACE le point *P* si :

P se trouve à égale distance des côtés [BA] et [BC];

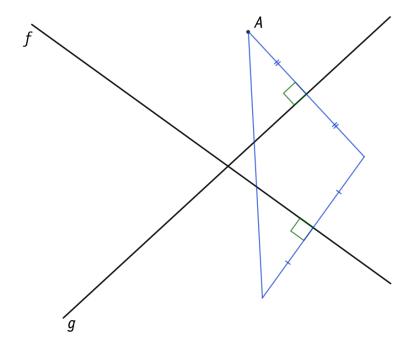
et

■ *P* appartient au côté [*AC*] du triangle *ABC*.



CONSTRUIS un triangle dont le point A est un sommet et dont les droites f et g sont deux de ses médiatrices.

18



QUESTION Q

/2

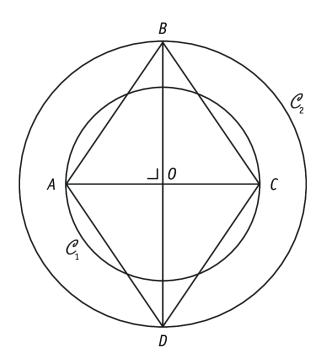
ÉCRIS la caractéristique commune aux diagonales d'un rectangle et d'un losange.

Les diagonales d'un rectangle comme celles d'un losange se coupent en leur milieu.

ÉCRIS la caractéristique supplémentaire des diagonales d'un carré par rapport à celles d'un rectangle.

Les diagonales d'un carré se coupent perpendiculairement. Ce n'est pas le cas de celles d'un rectangle. 20

Soit \mathcal{C}_1 un cercle de centre 0 et de rayon |OA|Soit \mathcal{C}_2 un cercle de centre 0 et de rayon |OB|



 $\mathcal{C}_{\!\scriptscriptstyle 1}$ et $\mathcal{C}_{\!\scriptscriptstyle 2}$ sont deux cercles <u>concentriques</u> .

JUSTIFIE que le quadrilatère ABCD est un losange.

Les segments de droites [AC] et [BD] sont perpendiculaires et se coupent en leur milieu. Ils constituent les diagonales d'un losange dont les points A, B, C et D sont les sommets.

Voici un extrait du tableau des médailles remportées lors d'une compétition interscolaire d'athlétisme.

École	Médaille d'or	Médaille d'argent	Médaille de bronze
Α	3	2	1
В	7	17	12
С	5	1	2
D	19	7	9
E	7	14	15
F	6	6	8

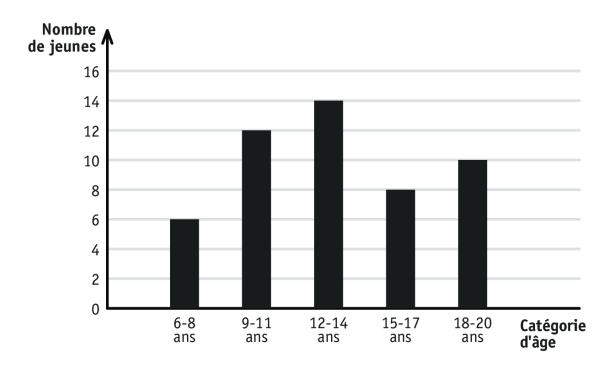
DÉTERMINE les deux écoles qui ont remporté le même nombre de médailles.	21a
Les écoles B et E ont remporté chacune 36 médailles.	
JUSTIFIE que, parmi le total de médailles remportées par l'école D, 20 % sont des	21b

L'école D a remporté en tout 35 médailles dont 7 d'argent.

$$\frac{7}{35}$$
 = 0,20 = $\frac{20}{100}$ = 20%

médailles d'argent.

Voici un graphique représentant le nombre de jeunes, classés par catégorie d'âge, qui ont participé à un cross.



22 jeunes ont moins de 13 ans.

DÉTERMINE le nombre de jeunes qui ont 13 ans ou plus.

Nombre de jeunes dont l'âge est égal ou compris entre 6 et 14 ans :

6 + 12 + 14 = 32

Nombre de jeunes parmi les 32 précédents qui ont au moins 13 ans : 32-22=10

Nombre de jeunes qui ont 13 ans ou plus :

10 + 8 + 10 = 28

Fédération Wallonie-Bruxelles / Ministère
Administration générale de l'Enseignement
Avenue du Port, 16 – 1080 Bruxelles
www.fw-b.be – 0800 20 000
Impression: SNEL GRAFICS - info@snel.be
Graphisme: Olivier VANDEVELLE - olivier.vandevelle@cfwb.be

Le Médiateur de la Wallonie et de la Fédération Wallonie-Bruxelles Rue Lucien Namèche, 54 – 5000 NAMUR 0800 19 199 courrier@le-mediateur.be

Éditeur responsable : Quentin DAVID, Directeur général

La « Fédération Wallonie-Bruxelles » est l'appellation désignant usuellement la « Communauté française » visée à l'article 2 de la Constitution

ÉPREUVE EXTERNE COMMUNE

CE1D2019

MATHÉMATIQUES

LIVRET 2 | LUNDI 17 JUIN

NOM:	
PRÉNOM:	
CLASSE:	
N° D'ORDRE :	

ATTENTION

Pour cette deuxième partie :

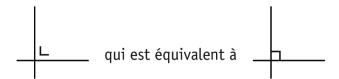
- la calculatrice est autorisée ;
- tu auras besoin de ton matériel de géométrie (latte, équerre, rapporteur, compas, crayons de couleur);
- n'hésite pas à annoter les figures ;
- n'efface pas tes brouillons.

Remarques:

le symbole × et le symbole · sont deux notations utilisées pour la multiplication

exemple: 5×3 correspond à $5 \cdot 3$

• pour traduire la perpendicularité sur une figure, on a utilisé le codage



- pour écrire les coordonnées d'un point, on a utilisé le codage (...; ...) qui est équivalent à (..., ...)
- |AB| est équivalent à \overline{AB} ou d(A;B)

COMPLÈTE.

____ 23

24

L'inverse de 4 est égal à $\frac{1}{4} = 0.25$

L'opposé de $-\frac{3}{2}$ est égal à $\frac{3}{2} = 1.5$

QUESTION

24

/

CALCULE la valeur numérique de $3x^2 - 2x - 1$ pour x = -2 et $x = \frac{1}{3}$. **ÉCRIS** tous tes calculs.

Si x = -2

$$3 \times (-2)^2 - 2 \times (-2) - 1$$

$$= 3 \times 4 - 2 \times (-2) - 1$$

$$= 3 \times 4 - (-4) - 1$$

$$= 3 \times 4 + 4 - 1$$

$$= 12 + 4 - 1$$

$$= 16 - 1$$

= 16

Si $x = \frac{1}{3}$

$$3 \times \left(\frac{1}{3}\right)^2 - 2 \times \frac{1}{3} - 1$$

$$= 3 \times \frac{1}{9} - 2 \times \frac{1}{3} - 1$$

$$=\frac{1}{3}-\frac{2}{3}-1$$

$$=\frac{1}{3}-\frac{2}{3}-\frac{3}{3}$$

$$=\frac{-4}{3}$$

QUESTION

25

/4

CALCULE en écrivant toutes les étapes.

ÉCRIS ta réponse sous la forme d'une fraction irréductible.

$$\left(\frac{1}{2} - \frac{1}{3}\right) \times 3 = \left(\frac{3}{6} - \frac{2}{6}\right) \times 3 = \frac{1}{6} \times 3 = \frac{3}{6} = \frac{1}{2}$$

$$\frac{1}{2} - \frac{1}{3} \times 3 = \frac{1}{2} - \frac{3}{3} = \frac{1}{2} - \frac{2}{2} = \frac{-1}{2}$$

DÉTERMINE, dans chaque cas, la valeur de *a* qui vérifie l'égalité.

726

$$\frac{-5+a}{13}=0$$

$$-5 + a = 0$$

$$a = 5$$

$$\frac{a+3}{4} = -1$$

$$a+3 = \frac{-1}{4}$$

$$\frac{4(a+3)}{4} = \frac{-1}{4}$$

$$4a+12 = -1$$

$$4a = -1 - 12$$

$$4a = -13$$

$$a = -13$$

QUESTION

Dans la cour de récréation, 20 élèves doivent se partager 302 billes.

Ali, un élève du groupe, propose : Partagez-vous équitablement le maximum de billes, je prendrai celles qui restent !

DÉTERMINE le nombre de billes qu'Ali recevra.

/2

ÉCRIS tous tes calculs.

 $302 = 20 \times 15 + 2$

Chaque élève du groupe recevra 15 billes. Ali en recevra 2 de plus, c'est-à-dire 17. HACHURE le tiers du quart de ce rectangle.

DÉTERMINE la fraction du rectangle qui n'est pas hachurée.

$$1 - \frac{1}{12} = \frac{12}{12} - \frac{1}{12} = \frac{11}{12}$$

COMPLÈTE.

Le tiers du quart de ce rectangle est aussi égal à la moitié du <u>sixième</u> de ce rectangle.

QUESTION

/4

Une famille commande deux pizzas de taille identique : une margherita et une aux champignons.

Le père mange $\frac{2}{3}$ de la margherita et la fille en mange $\frac{1}{6}$.

La mère mange $\frac{1}{2}$ de celle aux champignons et le fils en mange $\frac{3}{8}$.

Ils regroupent les morceaux restants des deux pizzas pour les mettre au frigo.

DÉTERMINE si, au total, il reste plus d'une demi-pizza.

ÉCRIS tous tes calculs.

Par de la margherita consommée : $\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{4+1}{6} = \frac{5}{6}$

Par de la pizza champignons consommée : $\frac{1}{2} + \frac{3}{8} = \frac{4}{8} + \frac{3}{8} = \frac{4+3}{8} = \frac{7}{8}$

$$Part\ du\ reste: \left(1 - \frac{5}{6}\right) + \left(1 - \frac{7}{8}\right) = \frac{1}{6} + \frac{1}{8} = \frac{4}{24} + \frac{3}{24} = \frac{4+3}{24} = \frac{7}{24}$$

Il reste donc moins d'une demi - pizza au frigo.

$$\frac{-7}{8} = \frac{x}{-40}$$

JUSTIFIE que x = 35.

____ 30

Dans toute proportion, le produit des termes moyens est égal au produit des termes extrêmes.

Produit des termes moyens : $8 \times 35 = 280$ Produit des termes extrêmes : $(-7) \times (-40) = 280$

La propriété fondamentale des proportions est donc bien vérifiée.

QUESTION 3

/2

Tableau A

х	У	
1	6	
2	7	
3	8	

Tableau B

X	У
3	1
4	2
6	4

Tableau C

x	У				
1	3				
4	12				
5 15					
X					

COCHE la case du tableau qui représente une situation de proportionnalité directe entre la grandeur x et la grandeur y.

] 31

DÉTERMINE le coefficient de cette proportionnalité. $k = \frac{y}{x} = \frac{3}{1} = \frac{12}{4} = \frac{15}{5} = 3$

Coefficient de proportionnalité = 3

QUESTION 32 /4

Sur le blog d'Alice, 60 % des visiteurs ont laissé un commentaire et 36 visiteurs n'ont rien écrit.

CALCULE le nombre total de visiteurs qu'Alice a reçus sur son blog.

____ 32a

ÉCRIS ton raisonnement et tous tes calculs.

221

Pourcentage de visiteurs ne laissant pas un commentaire sur le blog : 100 % - 60 % = 40 %

40 % représentent 36 personnes : 4 : 4 : 4 10 % représentent 9 personnes

x 6 x 6 60 % représentent 54 personnes

 $Nombre\ total\ de\ visiteurs\ qu'Alice\ a\ reçu\ sur\ son\ blog\ :$

36 + 54 = 90

On a jeté 40 fois un dé.

Pour chaque lancer, on a noté les valeurs obtenues (1 à 6).

6	6	3	2	6	4	2	6	1	3
<mark>4</mark> _	2	5	3	1	5	6	6	5	1
<mark>4</mark> _	<mark>4</mark> _	6	1	3	6	3	3	6	2
4_	<mark>5</mark> _	.5.	4	5	6	2	5	3	6

Dans le tableau suivant, on a noté le nombre de fois que chaque valeur est apparue.

Nombre	1	2	3	4	5	6
Effectif	4	5	7	6	7	11

Après comptage, certaines valeurs de lancer ont été effacées.

ÉCRIS les valeurs effacées dans les six cases du premier tableau (l'ordre n'a pas d'importance).

72

DÉTERMINE le mode de cette série statistique.

Mode: 6

Le mode est la valeur de la série ayant le plus grand effectif

CALCULE la fréquence relative au nombre 2.

La valeur 2 est sortie 5 fois sur un total de 40 lancers.

La fréquence relative au nombre 2 est donc :

$$\frac{5}{40} = \frac{1}{8} = 0,125 = 12,5 \%$$

Alexandra souhaite faire du sport.

Voici les deux tarifs proposés par une salle de sport.

- Tarif 1:35 € d'abonnement et 7 € par cours.
- Tarif 2:15 € par cours sans abonnement.

DÉTERMINE à partir de combien de cours (nombre entier) le tarif 1 est plus avantageux que le tarif 2.

ÉCRIS ton raisonnement et tous tes calculs.

$$15x = 35 + 7x$$

$$15x - 7x = 35 + 7x - 7x$$

$$8x = 35$$

$$8x : 8 = 35 : 8$$

$$x = 4,375$$

Pour la valeur 4,375, les Tarifs 1 et 2 seraient égaux.

Pour la valeur entière 4, le Tarif 2 est plus avantageux que le Tarif 1.

En effet,
$$15 \times 4 \in = 60 \in (Tarif \ 2)$$

alors que $35 \in +7 \times 4 \in = 35 \in +28 \in = 63 \in (Tarif \ 1)$

A partir de la valeur entière 5, le Tarif 1 est plus avantageux que le Tarif 2.

En effet,
$$15 \times 5 \in = 75 \in (Tarif \ 2)$$
 alors que $35 \in +7 \times 5 \in = 35 \in +35 \in = 70 \in (Tarif \ 1)$

Ainsi, dès le 5^{eme} cours, le Tarif 1 devient plus avantageux que le Tarif 2.

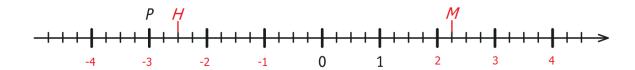
ÉCRIS l'abscisse du point *P*.

☐ 35

Abscisse de P: _-3

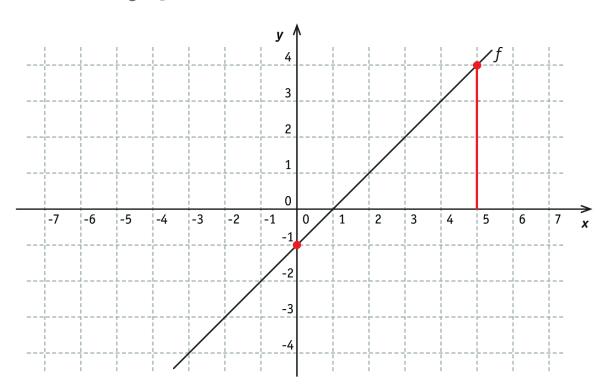
SITUE le point *H* d'abscisse $\frac{-5}{2}$ · $\frac{-5}{2} = -2.5$

SITUE le point M d'abscisse 2,25 .



QUESTION

/2



ÉCRIS les coordonnées du point d'intersection de la droite f et l'axe y.

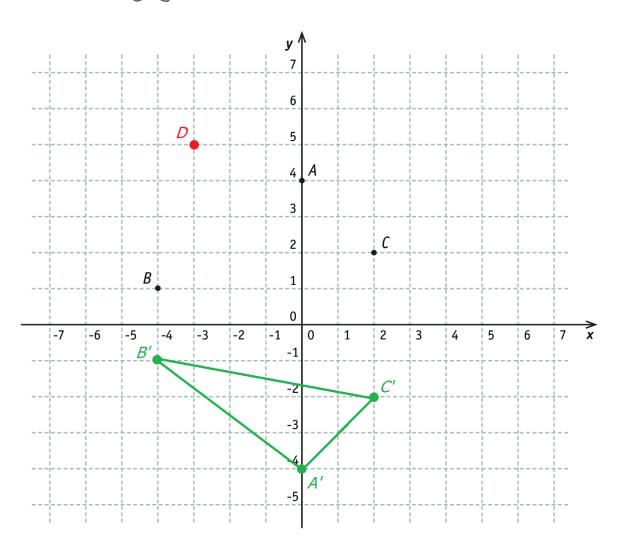
 \bigcap_{36}

Coordonnées du point : (0 ; -1)

ÉCRIS l'ordonnée du point de la droite f dont l'abscisse vaut 5.

Ordonnée du point : _____

QUESTION



ÉCRIS l'abscisse du point A.

Abscisse de A: 0

ÉCRIS les coordonnées du point B.

Coordonnées de B: _-4

PLACE le point D de coordonnées (-3; 5).

CONSTRUIS, dans le repère ci-dessus, le triangle A'B'C' qui respecte les deux conditions suivantes:

- les abscisses de A', B' et C' sont respectivement égales à celles de A, B et C.
- les ordonnées de A', B' et C' sont respectivement opposées à celles de A, B et C.

a) Quel est le nombre dont le tiers diminué de 5 vaut 1?

COCHE l'équation qui correspond à la situation si x représente ce nombre.

$$\frac{x-5}{3} = 1$$

$$\frac{X}{3} - 5 = 1$$

$$3x - 5 = 1$$

$$x - \frac{5}{3} = 1$$

b) Le côté d'un carré a la même mesure que celui d'un triangle équilatéral. Le périmètre du carré a 9 m de plus que celui du triangle équilatéral. Quelle est la longueur de ce côté?

COCHE l'équation qui correspond à la situation si x représente la longueur de ce côté.

$$4x = 3 \cdot (x + 9)$$

$$4 \cdot (x+9) = 3x$$

$$|X| 4x = 3x + 9$$

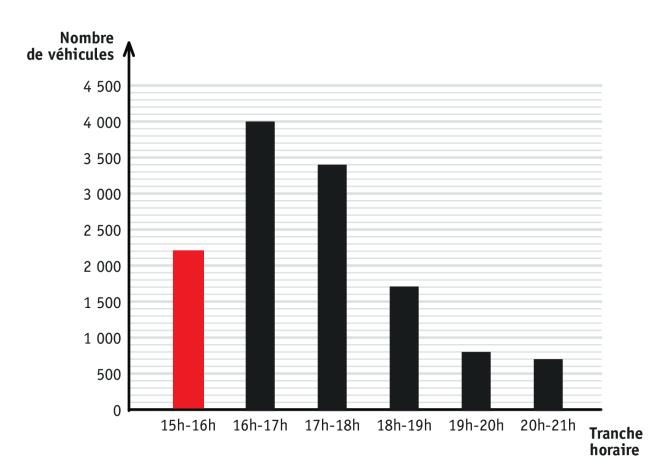
$$4x + 9 = 3x$$

39a

39b

Voici la répartition par tranche horaire des 12 800 véhicules quittant une ville entre 15 heures et 21 heures sous forme de tableau et de graphique.

Tranche horaire	15h-16h*	16h-17h	17h-18h	18h-19h	19h-20h	20h-21h
Nombre de véhicules	2 200	4 000	3 400	1 700	800	700



COMPLÈTE le tableau.

COMPLÈTE le graphique.

JUSTIFIE, par calcul, que les trois quarts des véhicules quittent la ville entre 15h et 18h.

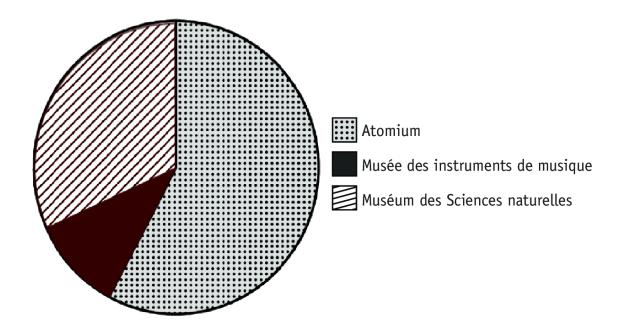
Nombre de voitures ayant quitté la ville entre 15h et 18h : 2200 + 4000 + 3400 = 9800 3/4 de 12800 = (12800 : 4) x 3 = 3200 x 3 = 9600

Comme 9800 > 9600, il y a donc bien 3/4 des véhicules qui ont quitté la ville entre 15h et 18h

^{*} 15h - 16h : l'intervalle entre 15h compris et 16h non compris. Il en est de même pour les autres intervalles.

Le 1er juin, le nombre de visiteurs était :

- de 1 248 pour l'Atomium ;
- de 228 pour le Musée des instruments de musique ;
- de 684 pour le Muséum des Sciences naturelles.



COMPLÈTE le diagramme circulaire qui représente cette situation.

ÉCRIS tous tes calculs.

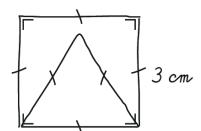
Nombre total de visiteurs enregistrés sur les trois sites le $\mathbf{1}^{\mathrm{er}}$ juin :

Amplitude du secteur angulaire pour l'Atomium :

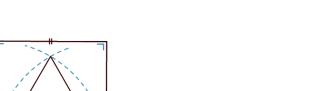
Amplitude du secteur angulaire pour le musée des instruments de musique :

Amplitude du secteur angulaire pour le musée des Sciences naturelles :

Vérification de la somme des amplitudes. Elle doit être égale à 360°.



CONSTRUIS, en vraie grandeur, la figure ci-dessus.



QUESTION 42

COMPLÈTE par le vocabulaire adéquat.

■ Un quadrilatère qui n'a pas d'axe de symétrie et qui a un centre de symétrie

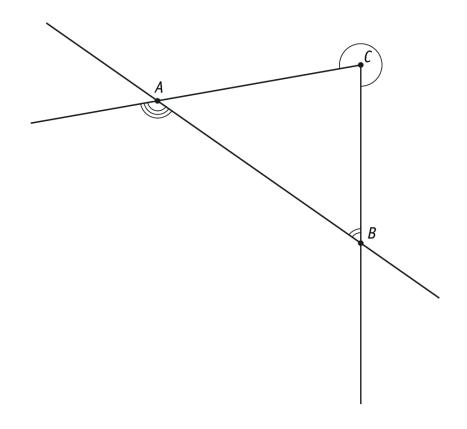
est un <u>parallélogramme</u> .

Un triangle qui a un seul axe de symétrie est un triangle isocèle

COMPLÈTE par un nombre.

Un hexagone régulier possède ___6__ axes de symétrie.

___ 43



Amplitude de l'angle $\hat{A} = 135^{\circ}$ °

Amplitude de l'angle $\hat{B} = 55^{\circ}$

Amplitude de l'angle $\hat{C} = 280^{\circ}$ °

Fédération Wallonie-Bruxelles / Ministère
Administration générale de l'Enseignement
Avenue du Port, 16 – 1080 Bruxelles
www.fw-b.be – 0800 20 000
Impression: SNEL GRAFICS - info@snel.be
Graphisme: Olivier VANDEVELLE - olivier.vandevelle@cfwb.be

Le Médiateur de la Wallonie et de la Fédération Wallonie-Bruxelles Rue Lucien Namèche, 54 – 5000 NAMUR 0800 19 199 courrier@le-mediateur.be

Éditeur responsable : Quentin DAVID, Directeur général

La « Fédération Wallonie-Bruxelles » est l'appellation désignant usuellement la « Communauté française » visée à l'article 2 de la Constitution